Seizure suppression by shakB2, a gap junction mutation in Drosophila.
نویسندگان
چکیده
Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB2, have behavioral and electrophysiological defects in the giant fiber (GF) system neurocircuit consistent with a loss of transmission at electrical synapses. The shakB2 mutation also affects seizure susceptibility. Mutant flies are especially seizure-resistant and have a high threshold to evoked seizures. In addition, in some double mutant combinations with "epilepsy" mutations, shakB2 appears to act as a seizure-suppressor mutation: shakB2 restores seizure susceptibility to the wild-type range in the double mutant. In double mutant combinations, shakB2 completely suppresses seizures caused by slamdance (sda), knockdown (kdn), and jitterbug (jbug) mutations. Seizures caused by easily shocked (eas) and technical knockout (tko) mutations are partially suppressed by shakB2. Seizures caused by bang-sensitive (bas2) and bang-senseless (bss1, bss2 alleles) mutations are not suppressed by shakB2. These results show the use of Drosophila as a model system for studying the kinds of genetic interactions responsible for seizure susceptibility, bringing us closer to unraveling the complexity of seizure disorders in humans.
منابع مشابه
Seizure Suppression by shakB, a Gap Junction Mutation in Drosophila
Song, Juan and Mark A. Tanouye. Seizure suppression by shakB, a gap junction mutation in Drosophila. J Neurophysiol 95: 627–635, 2006. First published September 28, 2005; doi:10.1152/jn.01059.2004. Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB, have behavioral and electrophysiological defects in the...
متن کاملSeizure Suppression by shakB, a Gap Junction Connexin Mutation in Drosophila
Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB 2 , have behavioral and electrophysiological defects in the giant fiber (GF) system neurocircuit consistent with a loss of transmission at electrical synapses. The shakB 2 mutation also affects seizure-susceptibility. Mutant flies are especially seizure-...
متن کاملNeurobiology of Disease Seizure Suppression by top1 Mutations in Drosophila
DNA topoisomerase I is an essential nuclear enzyme involved in resolving the torsional stress associated with DNA replication, transcription, and chromatin condensation. Here we report the discovery of a seizure-suppressor mutant, top1, which suppresses seizures in a Drosophila model of human epilepsy. A P-element mutagenesis screen using easily shocked seizure-sensitive mutant as a genetic bac...
متن کاملShaking B Mediates Synaptic Coupling between Auditory Sensory Neurons and the Giant Fiber of Drosophila melanogaster.
The Johnston's Organ neurons (JONs) form chemical and electrical synapses onto the giant fiber neuron (GF), as part of the neuronal circuit that mediates the GF escape response in Drosophila melanogaster. The purpose of this study was to identify which of the 8 Drosophila innexins (invertebrate gap junction proteins) mediates the electrical connection at this synapse. The GF is known to express...
متن کاملRelative frequency of GJB2 gene mutations in autosomal recessive non-syndromic hearing loss (ARNSHL) patients in Lorestan population
Background: Congenital hearing loss due to different genetic and environmental causes affects 1 in 1000 newborns. Mutations in the GJB2 (Gap Junction Beta-2) gene encoding the gap junction protein connexin 26 have been established as the main cause of autosomal recessive non-syndromic hearing loss. Materials and methods: The aim of this study was to study the frequency of GJB2 Mutations in Lor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 2 شماره
صفحات -
تاریخ انتشار 2006